626. Molecular Polarisability. Carbon-Halogen Bond Polarisabilities in Some p-Disubstituted Benzenes

By (Miss) M. L. Kemp and R. J. W. Le Fèvre

Abstract

Molar Kerr constants and apparent dipole moments in carbon tetrachloride at 25° are recorded for p-disubstituted benzenes, $p-X \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Y}$, where X and Y are, respectively: F, F; Cl, F; Br, F; Cl, Cl; Br, Cl; Cl, I; $\mathrm{Br}, \mathrm{Br} ; \mathrm{I}, \mathrm{I}$. The observed ${ }_{m} K$ values lie between those calculated using carbon-halogen bond semi-axes derived from methyl and phenyl halides. The polarisability semi-axes of the carbon-halogen bonds in the symmetrically substituted benzenes are estimated and found to be satisfactorily applicable to the non-symmetric molecules.

The measurements here reported have been made to examine the apparent anisotropic polarisabilities of carbon-halogen bonds when two of these are para-situated in a benzene ring.

Experimental

Materials, Apparatus, Etc.-Commercial samples of the following were recrystallised from ethanol: p-dichlorobenzene (m. p. 53°); p-bromochlorobenzene (m. p. 66.5°); p-dibromobenzene (m. p. 87°); p-di-iodobenzene (m. p. $129 \cdot 5^{\circ}$); p-chlorofluorobenzene (b. p. $130^{\circ} / 760$ mm .), and p-bromofluorobenzene (b. p. $152^{\circ} / 760 \mathrm{~mm}$.) were prepared by the method of Kukui, et al.; ${ }^{1} p$-chloroiodobenzene (m. p. 54 ${ }^{\circ}$) was obtained by the general procedure described by Vogel. ${ }^{2}$ A commercial sample of p-difluorobenzene ($n_{\mathrm{D}}{ }^{1991} 1-4418$) was used without further purification.

Apparatus, techniques, symbols used, and methods of calculation have been described before. ${ }^{3,4}$ The quantities $\Delta \varepsilon, \Delta d, \Delta n$, and ΔB are the differences found between the dielectric constants, densities, refractive indices, and Kerr constants, respectively, of carbon tetrachloride as solvent, and of solutions containing weight fractions w_{2} of solute. Observations and results are summarised in Tables 1 and 2. When $w_{2}=0$, the following apply at $25^{\circ}: \varepsilon_{1}=2 \cdot 2270$, $d_{1}=1.58454,\left(n_{1}\right)_{\mathrm{D}}=1.4575$, and $\left(B_{1}\right)_{\mathrm{D}}=0.070 \times 10^{-7}$.

Previous Measurements.-McClellan ${ }^{5}$ lists small apparent moments, ranging up to ca. 0.5 D , for some of the compounds under consideration when dissolved in non-polar media (usually benzene). No entry occurs for $p-\mathrm{F} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~F}$, and in no case is carbon tetrachloride shown as the solvent involved. A moment of 0.53 D is attributed to $p-\mathrm{Br}^{-} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~F}$ as a gas or as a molten liquid (in which state the polarity of $p-\mathrm{Cl}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~F}$ is given as $0.95-0.99 \mathrm{D}$). Differing methods of estimating distortion polarisations may account for such results. Hurdis and Smyth ${ }^{6}$ record the total polarisations of $p-\mathrm{Br}^{-} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~F}$ at seven temperatures between 436 and $524^{\circ} \mathrm{K}$; ${ }_{\mathrm{T}} P$ values from 37.1 to $\mathbf{3 7 . 8}$ c.c. are scattered irregularly, and moments calculated at each point by taking ${ }_{\mathrm{D}} P=R_{\mathrm{D}}=33 \cdot 7$ c.c. The correct ${ }_{\mathrm{D}} P$ should undoubtedly be greater than this, and the moment correspondingly lower; moreover, Hurdis and Smyth raise the possibility that their substance had a small content of the o-isomer. In Table 2, the R_{D} values are those deduced from solution, and if the common convention be followed that ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$ we must conclude that, within the limits of experimental accuracy, the moments in carbon tetrachloride are all indistinguishable from zero.

The $\infty\left({ }_{m} K_{2}\right) \times 10^{12}$ published by Le Fèvre and Le Fèvre ${ }^{7}$ for $p-\mathrm{Cl}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Cl}(38 \cdot 6)$ is inexplicably higher than our now redetermined value (25.8), which is more in harmony with earlier data by Otterbein ${ }^{8}$ and Briegleb; ${ }^{9}$ the $40 \cdot 3 \pm 2$ quoted in ref. 7 for $p-\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Br}$ is in satisfactory agreement with the 38.1 in Table 2.
${ }^{1}$ Kukui et al., J. Chem. Soc. Japan, 1958, 79, 1120.
2 Vogel, " Practical Organic Chemistry," Longmans, London, 3rd edn., 1956, p. 598.
${ }^{3}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
4 Le Fèvre and Le Fèvre (a) Rev. Puve Appl. Chem. (Australia), 1955, 2, 261; (b) Ch. XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience, New York, London, 3rd edn., vol. 1, p. 2459.
${ }^{5}$ McClellan, "Tables of Experimental Dipole Moments," Freeman, San Francisco, 1963.
${ }^{6}$ Hurdis and Smyth, J. Amer. Chem. Soc., 1942, 64, 2212.
${ }^{7}$ Le Fèvre and Le Fèvre, J., 1954, 1577.
${ }^{8}$ Otterbein, Physik. Z., 1933, 34, 645; 1934, 35, 249.

- Briegleb, Z. physikal. Chem., 1932, B16, 249.

Table 1
Incremental dielectric constants, densities, refractive indices, and Kerr constants of solutions in carbon tetrachloride at 25°

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=0.150 ; \Sigma \Delta d / \Sigma w_{2}=-0.455 ; \Sigma \Delta n / \Sigma w_{2}=0.044 ; \Sigma \Delta B / \Sigma w_{2}=1.09 \times 10^{-7}$

p-Dichlorobenzene									
$10^{5} w_{2} \ldots$	3476	5547	5686	6424	7385	7689	8056	9771	17,431
$10^{4} \Delta \varepsilon \ldots$	-	-	170	180	204	211	-	265	469
$-10^{5} \Delta d$	1248	1980	-	2285	-		2866	3471	-
$10^{4} \Delta n \ldots$	-	-	69	75	85	88	-	112	212

whence $\Delta \varepsilon=0.284 w_{2}-0.089 w_{2}{ }^{2} ; \Sigma \Delta d / \Sigma w_{2}=-0.356 ; \Sigma \Delta n / \Sigma w_{2}=0.117$

$10^{5} w_{2}$	548	821	1573	1839	3356	3374	4416	5554	6389	6397	10,270	11,416
$10^{11} \Delta B$	97	158	237	300	615	496	67 。	82_{3}	958	1073	1595	179 6
					ce	/ Σ	1.5	10^{-7}				

p-Bromochlorobenzene										
$10^{5} w_{2}$	1231	2408	3632	4347	4503	5846	7857	9148	9302	9729
$10^{4} \Delta \varepsilon$		72	114	-	145	186	253	288	296	308
$10^{5} \Delta d$	一	-	-	-	219	289	385	451	452	-
$10^{4} \Delta n$	-	31	45	-	57	75	100	-	-	-
$10^{10} \Delta B$	20	-	-	58	68	82	106	-	-	-

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=0.317 ; \Sigma \Delta d / \Sigma w_{2}=0.049 ; \Sigma \Delta n / \Sigma w_{2}=0.127 ; \Sigma \Delta B / \Sigma w_{2}=1 \cdot 40_{4} \times 10^{-7}$

p-Chloroiodobenzene									
$10^{5} w_{2}$	930	1011	1376	1382	1628	1698	2064	3056	3332
$10^{4} \Delta \varepsilon$	43	41	60	67	75	75	96	133	151
$10^{5} w_{2}$	2077	2373	3330	3912					
$10^{5} \Delta d$	700	731	1027	1233					
$10^{5} w_{2}$	1376	1698	2490	3093					
$10^{4} \Delta n$	20	27	38	45					
$10^{5} w_{2}$	812	1287	1576	2373	2425	3330	3912		
$10^{10} \Delta B$	15	22	26	47	50	66	77		

p -Dibromobenzene							
$10^{5} w_{2}$	1077	1860	2655	4283	5264	5905	7489
$10^{4} \Delta \varepsilon$	-	59	86	140	182	196	255
$10^{5} \Delta d$	-	580	820	1329	1625	-	2324
$10^{4} \Delta n$	14	25	35	55	67	76	97

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=0.334 ; \Sigma \Delta d / \Sigma w_{2}=0.310 ; \Sigma \Delta n / \Sigma w_{2}=0.129$

$10^{5} w_{2}$	1633	2576	2751	3855	4315	4753	6874
$10^{10} \Delta B$	22	41	43	56	56	66	109
whence $\Sigma \Delta B / \Sigma w_{2}=1.47 \times 10^{-7}$							
p-Di-iodobenzene							
$10^{5} w_{2}$	746	806	1217	1576	1767	2384	2758
$10^{4} \Delta \varepsilon$	33	34	-	67		-	
$10^{5} \Delta d$			-	916	1012	-	1601
$10^{4} \Delta n$	13	13	20	26	-	40	-
$10^{10} \Delta B$	14	14	24	28	-	46	-

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=0.428 ; \Sigma \Delta d / \Sigma w_{2}=0.578 ; \Sigma \Delta n / \Sigma w_{2}=0.166 ; \Sigma \Delta B / \Sigma w_{2}=1.87 \times 10^{-7}$

Table 2
Polarisations, refractions, and molar Kerr constants in carbon tetrachloride at 25°

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	∞P_{2} (c.c.)	R_{D} (c.c.)	$10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right)$
$p-\mathrm{F} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~F}$	0	-0.369	0	$10 \cdot 1$	$28 \cdot 6$	26.9	$9 \cdot 8$
$p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~F}$	$0 \cdot 150$	-0.287	0.030	$15 \cdot 6$	$32 \cdot 9$	$30 \cdot 8$	16.4
$p-\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~F} \ldots$	$0 \cdot 231$	$0 \cdot 004$	0.051	$13 \cdot 1$	$36 \cdot 2$	$34 \cdot 3$	$18 \cdot 3$
$p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}{ }^{\circ} \mathrm{Cl} \ldots$	0.284	-0.225	0.080	$22 \cdot 4$	$37 \cdot 4$	$36 \cdot 4$	$25 \cdot 8$
$p-\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Cl} \ldots$	0.317	0.031	0.087	$20 \cdot 1$	$40 \cdot 4$	$39 \cdot 9$	29.9
$p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{I} \ldots$	$0 \cdot 450$	$0 \cdot 199$	0.103	$27 \cdot 6$	$46 \cdot 4$	44.5	$50 \cdot 1$
$p-\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Br}$	0.334	$0 \cdot 196$	0.089	21.0	$43 \cdot 1$	$42 \cdot 6$	$38 \cdot 1$
$p-\mathrm{I} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{I} \ldots \ldots$.	$0 \cdot 428$	$0 \cdot 365$	0.114	$26 \cdot 7$	$53 \cdot 3$	53.9	$66 \cdot 7$

Discussion

Applicability of Existing Carbon-Halogen Polarisabilities.-Molar Kerr constants were calculated from polarisability semi-axes for the $\mathrm{C}_{6} \mathrm{H}_{4}$ group ($b_{1}=b_{2}=9 \cdot 86 ; b_{3}=6.05{ }^{*}$) and those previously found for $\mathrm{C}-\mathrm{X}$ bonds in various types of molecular environment.

Exaltations of refraction (the differences between the R_{D} values in Table 2 and those computed from the Tables of Vogel et al. ${ }^{10}$) are generally very small and within the experimental errors in the observed R_{D} values; accordingly, in our calculations consideration of the directional properties of exaltation has not been attempted.

Results are shown in Table 3, where values in columns A, B, C, and D refer, respectively, to the ${ }_{\mathrm{M}} \mathrm{K}$ values predicted using $\mathrm{C}-\mathrm{X}$ bond parameters drawn from $\mathrm{CH}_{3} \mathrm{X},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHX}$, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CX}$, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}$ (refs. 11 and 12). Comparison of the observed and calculated ${ }_{\mathrm{m}} \mathrm{K}$ values suggests that $\mathrm{C}-\mathrm{X}$ in $p-\mathrm{X} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{X}$ is less anisotropically polarisable than in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}$; some quantitative estimates of the modifications involved are made in the following section.

Estimation of Carbon-Halogen Polarisabilities.-In the case of the four symmetrically substituted benzenes, it is possible to calculate polarisability semi-axes for the $\mathrm{C}-\mathrm{X}$ bonds by the use of various assumptions. Since these compounds are non-polar, and since there appear to be no measurements in the literature of refractive indices along specific crystal axes, b_{1}, b_{2}, and b_{3} cannot be calculated directly from experiment; this would be so even if reliable light scattering data were available. If, however, we assume that b_{T} and b_{V} for the $\mathrm{C}-\mathrm{X}$ bonds in these molecules are equal, in turn, to those in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHX}$, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CX}$, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}$ (noting that columns B, C, and D of Table 3 are in closest accord with observation), then the usual equations (ref. 4) can be solved to yield, in each case, the apparent $b_{\mathrm{L}}(\mathrm{C}-\mathrm{X})$. A further assumption can be made, viz., that $b_{\mathrm{T}}=v_{\nabla}$ for the $\mathrm{C}-\mathrm{X}$ bond in $p-\mathrm{X} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{X}$. Calculation of the two unknowns, b_{L} and b_{P}, then requires both the experimental ${ }_{\mathrm{m}} K$ and ${ }_{\mathrm{E}} P$. For p-dichloro-, p-dibromo-, and p-di-iodo-benzene, the ${ }_{\mathrm{E}} P$ values were calculated from bond values given by Le Fèvre and Steel, ${ }^{13}$ yielding $34 \cdot 57$,

[^0]Table 4

Estimated polarisability semi-axes for $\mathrm{C}-\mathrm{X}$ bond in $p-\mathrm{X} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{X}$						
	Bond	A	B	C	D	E
		$b_{\text {L }}$	$b_{\text {L }}$	$b_{\text {L }}$	$b_{\text {d }}$	$b_{\text {T }}\left(=b_{\mathrm{V}}\right.$)
C-F		-	-	$0 \cdot 51$	$0 \cdot 97$	$0 \cdot 45$
$\mathrm{C}-\mathrm{Cl}$		$3 \cdot 9$	$3 \cdot 8$	$3 \cdot 7$	$4 \cdot 1$	1.8
$\mathrm{C}-\mathrm{Br}$		$5 \cdot 9$	$5 \cdot 7$	$5 \cdot 3$	$5 \cdot 7$	$2 \cdot 6$
C-I		$9 \cdot 3$	8.8	8.0	$8 \cdot 6$	$4 \cdot 0$

39.98 , and 49.69 c.c., respectively. For p-difluorobenzene, Timmerman's refractivity dispersion data ${ }^{14}$ were extrapolated to infinite wavelength by means of the formula quoted by Le Fèvre (p. 18 ref. 3), giving ${ }_{\mathrm{E}} P=24 \cdot 80$ c.c. Table 4 lists the b_{L} valucs, obtained by the procedures described above, under the headings A [using $b_{\mathrm{T}}(\mathrm{C}-\mathrm{X})$ and $b_{V}(\mathrm{C}-\mathrm{X})$ from $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHX}\right], \mathrm{B}\left[\right.$ from $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CX}\right], \mathrm{C}\left[\right.$ from $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}\right]$, and $\mathrm{D}\left[b_{\mathrm{T}}(\mathrm{C}-\mathrm{X})=\right.$ $\left.b_{\mathrm{V}}(\mathrm{C}-\mathrm{X})\right]$. Column E lists $b_{\mathrm{T}}\left(=b_{\mathrm{V}}\right)$ for the $\mathrm{C}-\mathrm{X}$ bonds derived in the calculation of column D.

Some test of the validity of these values is obtained by using them, together with the corresponding b_{T} and b_{V} in each case, to calculate ${ }_{m} K$ values for the $p-\mathrm{X} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Y}$ molecules, and by comparing these values with the observed ${ }_{m} K$ values, as shown in Table 5.

Table 5

Solute	Calculated $\mathrm{m} \mathrm{K}^{*}\left(\times 10^{12}\right)$				$\begin{gathered} \text { Observed } \\ \infty\left({ }_{m} K_{2}\right) \times 10^{12} \end{gathered}$
	A	B	C	D and E	
$p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~F}$	-	-	$15 \cdot 7$	16.6	16.4
$p-\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~F}$	-	-	$19 \cdot 4$	20.7	$18 \cdot 3$
$p-\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Cl}$	$31 \cdot 1$	$31 \cdot 2$	31-1	$32 \cdot 1$	29.9
$p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{I}$	$43 \cdot 3$	$43 \cdot 2$	$43 \cdot 6$	$44 \cdot 2$	$50 \cdot 1$

It is to be noted that the observed ${ }_{m} K$ values are quite small and may be subject to errors as high as 10%, and that a moment of 0.25 D for p-chloroiodobenzene would make the ${ }_{\mathrm{m}} K$ predicted, e.g., by the fourth procedure (44•2), equal to the observed value. From Table 5, it can be seen that the calculated ${ }_{\mathrm{m}} K$ values are relatively insensitive to small changes in the semi-axes of the $\mathrm{C}-\mathrm{X}$ bonds. Thus, it seems more reasonable, particularly in view of the approximations in estimating ${ }_{\mathrm{E}} P$ [and hence in the evaluation of absolute values of $\left.b_{i}(\mathrm{C}-\mathrm{X})\right]$, to compare the effect of different environments on the anisotropy of the C-X bond. The anisotropy, defined by Smith and Mortensen ${ }^{15}$ as $\left(2 b_{\mathrm{L}}-b_{\mathrm{T}}-b_{\mathrm{V}}\right) / 2$ is accordingly computed for the $\mathrm{C}-\mathrm{X}$ bond in $\mathrm{CH}_{3} \mathrm{X}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}$, and $p-\mathrm{X} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{X}$ (in the latter case, using the semi-axes of columns D and E of Table 4). The results are summarised in Table 6.

Table 6
Anisotropy of $\mathrm{C}-\mathrm{X}$ bonds * (in 10^{-24} c.c.)

Environment	C-F	$\mathrm{C}-\mathrm{Cl}$	$\mathrm{C}-\mathrm{Br}$	$\mathrm{C}-\mathrm{I}$
$\mathrm{CH}_{3} \mathrm{X}$	$0 \cdot 85$	$0 \cdot 93$	$1 \cdot 6$	1.9
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}$	$0 \cdot 20$	$2 \cdot 5$	$3 \cdot 9$	$4 \cdot 8$
$p-\mathrm{X} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{X}$	$0 \cdot 5_{2}$	$2 \cdot 3$	$3 \cdot 1$	$4 \cdot 6$

* b_{i} for $\mathrm{C}-\mathrm{X}$ in $\mathrm{CH}_{3} \mathrm{X}$ and $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{X}$ from ref. 10 , except $\mathrm{CH}_{3} \mathrm{I}$ in which $b_{\mathrm{L}}{ }^{\mathrm{OI}}$ and $b_{\mathrm{T}}{ }^{\mathrm{CI}}$ have recently ${ }^{16}$ been redetermined as 6.7 and 1.9 , respectively.

Conclusions.-Table 6 shows (as would a comparison of Table 4 of this Paper with Table $\mathbf{1}$ of ref. 10) that carbon-halogen bonds in p-disubstituted benzenes are less anisotropically polarisable than in the related mono-derivatives of benzene. Such a result seems reasonable since the electropolar characters represented (in Ingold's symbolism) by $+M,+E$,

[^1]and $-I$ run as $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$, and a 1,4 -orientation is therefore one in which these " effects " of the substituents are in opposition; mesomeric displacements in particular are thought ${ }^{17}$ to affect strongly the longitudinal polarisabilities of bonds attached to conjugated systems.

We gratefully acknowledge the assistance of Dr. M. J. Aroney in this work, and the award of a Commonwealth Research Scholarship to M. L. K.

University of Sydney, Sydney, N.S.W., Australia. [Received, September 14th, 1964.]
${ }^{17}$ Ingold, " Structure and Mechanism in Organic Chemistry," Cornell Univ. Press, Ithaca, 1953, p. 137.

[^0]: * Molecular and group polarisabilities are quoted throughout in 10^{-24} c.c. units.
 ${ }^{10}$ Vogel, Cresswell, Jeffery, and Leicester, $J ., 1952,514$.
 ${ }^{11}$ Le Fèvre, J. Proc. Roy. Soc. New South Wales, 1961, 95, 1.
 ${ }^{12}$ Chen and Le Fèvre, unpublished data.
 ${ }^{13}$ Le Fèvre and Stcel, Chem. and Ind., 1961, 670.

[^1]: ${ }^{14}$ Timmerman, " Physico-chemical Constants of Organic Compounds," Elsevier, Amsterdam, 1950.
 ${ }^{15}$ Smith and Mortensen, J. Chem. Phys., 1960, 32, 502.
 ${ }^{16}$ Le Fèvre and Orr, unpublished data.

